### 14th International Congress on Catalysis. Seoul, Korea, 13-18 July, 2008



#### **Boreskov Institute of Catalysis**

The Polar Division of MMC Norilsk Nickel



# New catalysts and advanced technology for catalytic reduction of sulfur dioxide from emissions of nonferrous smelters

Zinfer Ismagilov<sup>a</sup>, Sergei Khairulin<sup>a</sup>, Svetlana Yashnik<sup>a</sup>, Valentin Parmon<sup>a</sup>, Igor Ilyukhin<sup>b</sup>

- a Boreskov Institute of Catalysis, Novosibirsk, 630090, Russia
- b The Polar Division of MMC Norilsk Nickel. Norilsk, Russia

#### **Modern methods of SO<sub>2</sub> abatement**



Catalytic methods leading to formation of elementary sulfur are the most prospective ways for substantial reduction of sulfur dioxide emissions. Sulfur is non-toxic product, no problems with transportation and storage High demand of world market in sulfur. Current price is over 600 \$ per metric tone



The enterprises of non-ferrous metallurgy are the main factor of environment pollution with sulfur dioxide

SO<sub>2</sub> is resulting from the roasting of non-ferrous ores

#### Typical emissions:

ca. 1 000 000 tons of SO<sub>2</sub> per year (Polar Division of Open Joint Stock Company Mining and Metallurgical Company Norilsk Nickel - Russia) ca. 500 000 tons of SO<sub>2</sub> per year (Balkhash Mining and Metallurgical Company – Republic of Kazakhstan)

The requirements to the catalysts to be developed: *High temperature reduction of*  $SO_2$  *with methane*   $SO_2 + CH_4 \Leftrightarrow S(H_2S) + H_2O + CO_2$ High thermal stability (the range of operating temperatures is 700-960°C) Resistance to coking

Low temperature reduction of SO<sub>2</sub> with syn-gas SO<sub>2</sub> +  $H_2(CO) \Leftrightarrow S + H_2O(CO_2)$ High selectivity to sulfur Suppression of formation of side products carbon disulfide, carbon sulfide oxide.



Laboratory set-up at BIC



Sulfur condenser



Testing the catalysts performance in BIC pilot plant

Pilot plant for testing the catalysts under realistic conditions

## MAIN RESULTS OF PILOT TESTS





 $GHSV = 1450 h^{-1}.$ 

#### **Comparative analysis of process versions**

| PROCESS<br>CONDITIONS       | SO <sub>2</sub> REDUCTION<br>WITH METHANE | SO <sub>2</sub> REDUCTION<br>WITH SYN-GAS |
|-----------------------------|-------------------------------------------|-------------------------------------------|
| Temperature, <sup>o</sup> C | 910 ÷ 960                                 | 400 ÷ 600                                 |
| Sulfur yield,%              | 60-65                                     | > 80                                      |

to high prospects of low-temperature sulfur dioxide reduction with syn-gas and its substantial advantages ov